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Abstract

A ductile matrix material containing an arbitrary distribution of parallel and stiff lamellar (‘rigid-line’) inclusions
is considered, subject to a prestress state provided by a simple shear aligned parallel to the inclusion lines. Because
the lamellae have negligible thickness, the simple shear prestress state remains uniform and its amount can be high
enough to drive the matrix material on the verge of ellipticity loss. Close to this critical stage, a uniform remote Mode I
perturbation realizes shear band formation, growth, interaction, thickening or thinning. This two-dimensional problem
is solved through the derivation of specific boundary integral equations, holding for a nonlinear elastic matrix material
uniformly prestressed; the related numerical treatment is specifically tailored to capture the stress singularity present
at the inclusion tips. Results show how complex localized deformation patterns form, so explaining features related to
the failure mechanisms of ductile materials reinforced with stiff and thin inclusions. In particular, the influence of the
inclusion distribution on the shear bands pattern is disclosed. Conditions for the magnification (the attenuation) of the
localized deformations are revealed, fostering the progress (the setback) of the failure process.

1 Introduction

A distribution of hard inclusions enhances stiffness of a soft and ductile matrix, thus originating a material able to combine
rigidity with toughness. This combination would not only realize the dream of medieval sword makers, but is highly
requested in a number of advanced technical applications. For this reason, a great research effort has been directed to
the development of metal matrix composites (MMC), where the matrix is a compliant metal, for instance, aluminum,
magnesium, or titanium, while the reinforcement, in the form of particles, platelets, short or continuous fibres, may be
another metal or a different, stiffer and stronger material, such as a ceramic (in which case the composite is called ‘cermet’
[46]). In this field, stiff lamellar inclusions are common and can be present as parallel distributions, as for instance in
materials mimicking nacre [17]. Due to their high-contrast stiffness with the matrix and their high slenderness, the
lamellae are also called ‘rigid-line inclusions’.

Although beneficial for stiffness (and other properties such as hardness and resistance to decomposition by heat or
chemical attack), the introduction of stiff lamellar inclusions plays a complex role on the effective strength. It has been
proven both theoretically [3, 6, 11, 13, 21, 30, 32, 39] and experimentally [27, 28, 35, 37] that stiff lamellar inclusions
create a strong stress concentration in the matrix material, which may lead to premature failure by shear band or crack
nucleation and growth [47]. Therefore, the study of shear banding represents a key for the design of materials with
superior mechanical properties.

The framework introduced by Dal Corso and Bigoni [12] is extended in the present article to the analysis of interactions
between multiple rigid-line inclusions, all aligned parallel to a simple shear deformation of arbitrary amount, applied to
an infinite matrix material. Under the assumed distribution of inclusions, the prestress state introduced through shearing
remains uniform and can be increased up to the verge of ellipticity loss. A new boundary integral equation is obtained,
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governing the incremental response of a uniformly prestressed elastic material containing the rigid-line lamellae and
subject to a remote perturbation, selected of Mode I in the applications. The integral equation allows for the numerical
solution of problems involving several inclusions [16, 14, 24], so disclosing a series of important features related to
interaction between shear bands and obstacles, involving nucleation, growth, thickening or thinning of the localized
deformation.

Although boundary integral approaches are particularly indicated and in wide use for problems involving singularities
[8, 18, 33, 36, 40], finite elements permit large simulations, involving distributions of hundreds of inclusions, which can
be investigated during an evolutive strain path in a fully elasto-damaging material [22, 23]. From this point of view, finite
elements appear to be superior to boundary integral techniques. However, the boundary integral technique proposed in
the present article, even if based on the simplifying assumptions inherent to an incremental formulation, still presents
a number of merits, leading to a highly refined definition of the mechanical fields under investigation. The merits are
those typical of a boundary integral formulation and include: (i.) the discretization of only the boundaries of the lamellae
and (ii.) a highly-precise representation of the singularity at the tips of the inclusions. In addition, and importantly for
problems of material stability, (iii.) the integral approach permits the direct modelling of an infinite domain, so that the
‘van Hove’ conditions are enforced, ruling out all possible bifurcations occurring before loss of ellipticity and allowing
for the shear bands emergence in a uniformly prestressed material [4].1

The mechanical problem of a distribution of parallel rigid-line inclusions embedded in an elastic matrix subject
to simple shear is introduced (Section 2) and used to obtain the boundary integral equation governing the incremental
response of the inclusion to a remote perturbation (Section 3). A numerical scheme is introduced (Section 4) to perform
simulations and capable of resolving the complex mechanical fields developing during the blow-up of shear band patterns
near several lamellae. Beside a validation of the proposed scheme with the analytical solution for one (obtained in [12])
and two collinear lamellae (Section 5.1), sets of two, four, and five lamellae are investigated with different lengths and
arranged in different configurations within an incompressible matrix obeying J2–deformation of plasticity (Sections 5.2
and 5.3).

The presented results demonstrate that the rigid lamellae distribution may be tuned to shield or to amplify the emer-
gence of shear band networks, as the result of weakening or strengthening of the complex mechanical interactions between
inclusions and localized strain. It is shown that shear band magnification is produced by the merging of two shear bands,
whereas shear bands are cut down when intersecting a rigid lamella.

2 Rigid lamellae in an infinite medium

A distribution of𝑁 rigid-line (zero-thickness) inclusions, of half-length 𝑙(𝑛) (𝑛 = 1, ..., 𝑁), is considered embedded within
an infinite homogeneous elastic matrix (Fig. 1, left). In the undeformed state, each inclusion is parallel and orthogonal to
the �̂�1 and �̂�2 axes respectively and has its center located at the point 𝐂(𝑛) (𝑛 = 1, ..., 𝑁), so that the 𝑛-th rigid inclusion
occupies the line domain ℛ(𝑛), defined as

ℛ(𝑛) ∶=
{

|

|

|

�̂�1 − 𝐶 (𝑛)
1
|

|

|

≤ 𝑙(𝑛), �̂�2 = 𝐶 (𝑛)
2

}

, 𝑛 = 1, ..., 𝑁. (1)

Application of a remote simple shear state parallel to the �̂�1 axis (Fig. 1, right) realizes a uniform prestress state,
because all the inclusions are parallel to the simple shear direction, which is a zero-elongation line. Therefore, the point

1The possibility of treating an infinite domain containing the rigid inclusions is made available through the use of the integral equation introduced
here and is fundamental for problems of material instability. In fact, in an exact (consistently derived from a nonlinear formulation) incremental
analysis of a homogeneously-strained material element, loss of ellipticity, corresponding to shear band formation, is the last of a series of subsequent
instabilities, including, when possible, Euler-type, or bulging, or surface bifurcation (the latter being always possible when at least a part of the
boundary is free from imposed displacements). After the first of these instabilities is encountered, homogeneity of the material element is lost.
Therefore, it is impossible to reach the ultimate state for shear band formation in a homogeneous sample, except when the van Hove conditions
are met, in which case, homogeneity of strain and stress is preserved up to failure of ellipticity. The van Hove conditions either correspond to
displacements prescribed over the whole boundary of a sample or to an infinite domain. In the former case boundary displacements, while in
the latter remote conditions, have to be consistent with uniform strain. Therefore, within a large strain formulation, enforcement of the van Hove
conditions represents the only route to the analysis of strain localization into planar bands in a uniformly strained and stressed material element.
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�̂� = {�̂�1, �̂�2} is transformed into the point �̂� = {�̂�1, �̂�2} as follows
�̂�1 = �̂�1 + 𝛾 �̂�2, and �̂�2 = �̂�2, (2)

where the dimensionless parameter 𝛾 rules the shear amount [4, 12], and consequently the line domainℛ(𝑛) is transformed
into the line domain 𝓇(𝑛),

𝓇(𝑛) ∶=
{

|

|

|

�̂�1 − 𝐶 (𝑛)
1 − 𝛾𝐶 (𝑛)

2
|

|

|

≤ 𝑙(𝑛), �̂�2 = 𝐶 (𝑛)
2

}

, 𝑛 = 1, ..., 𝑁. (3)
Considering an initially isotropic elastic matrix, the principal Cauchy prestress components 𝜎1 and 𝜎2 are parallel to

the principal prestretches 𝜆1 and 𝜆2,
𝜆1,2 = ±

𝛾
2
+
√

1 +
(𝛾
2

)2
, (4)

and are aligned parallel to the 𝑥1 and 𝑥2 axes and inclined at the Eulerian (anti-clockwise) angle 𝜃𝐸 , measured with respect
to the �̂�1 and �̂�2 axes,

𝜃𝐸 = 1
2

arctan2
𝛾
. (5)

Figure 1: Distribution of 𝑁 rigid-line inclusions of length 2𝑙(𝑛) (𝑛 = 1, ..., 𝑁) aligned parallel to the �̂�1–axis. The reference, unstrained, con-
figuration is shown on the left, while on the right the configuration is reported after the application of a simple shear deformation (of amount 𝛾),
parallel to the lamellae. A Mode I perturbation (not shown) is eventually applied on the strained configuration.

The incremental response of the prestressed elastic material is described by the following linear constitutive equation,
relating the increment of the nominal stress (transpose of the first Piola-Kirchhoff stress), 𝑡𝑖𝑗 (𝑖, 𝑗 = 1, 2), to the incremental
displacement gradient, �̂�𝑙,𝑘 (𝑙, 𝑘 = 1, 2),

𝑡𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

�̂�𝑖𝑗𝑘𝑙�̂�𝑙,𝑘, for compressible material,
�̂�𝑖𝑗𝑘𝑙�̂�𝑙,𝑘 + �̇� 𝛿𝑖𝑗 , for incompressible material,

(6)

where repeated indices are summed, the subscript 𝑘 after a comma denotes differentiation with respect to the �̂�𝑘–axis,
and �̂�𝑖𝑗𝑘𝑙 are the components of the fourth-order incremental constitutive tensor. In the case of incompressible material,
a Lagrangian multiplier �̇� enters the formulation, representing the incremental mean stress, multiplied by the Kronecker
delta 𝛿𝑖𝑗 and the following internal constraint on the incremental displacement is enforced,

�̂�𝑖,𝑖 = 0, for incompressible material. (7)
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At this stage, the material, uniformly prestressed under the shear amount 𝛾 , is perturbed through an incremental Mode
I loading. More specifically, a linear incremental displacement is remotely applied under Mode I

lim
|�̂�|→∞

�̂�1(�̂�1, �̂�2) = �̂�∞1,1�̂�1, lim
|�̂�|→∞

�̂�2(�̂�1, �̂�2) = �̂�∞2,2�̂�2, (8)
where �̂�∞1,1 and �̂�∞2,2 define the two normal incremental strains at infinity, which are independent variables when the material
is compressible, but become constrained by �̂�∞2,2 = −�̂�∞1,1 in the incompressible case, eqn (7). The presence of the rigid-
line inclusions introduce further constraints on the perturbation of the mechanical fields. In particular, the incremental
displacement field along each line inclusion is constrained to suffer an incremental rigid-body movement

�̂�1(�̂�1, �̂�2) = 𝜂(𝑛)1 ,

�̂�2(�̂�1, �̂�2) = 𝜂(𝑛)2 + 𝜔(𝑛)
(

�̂�1 − 𝐶 (𝑛)
1 − 𝛾𝐶 (𝑛)

2

)

,
for �̂� ∈ 𝓇(𝑛), 𝑛 = 1, ..., 𝑁, (9)

where 𝜂(𝑛)1 and 𝜂(𝑛)2 denote the incremental translation of the inclusion center in the �̂�1–�̂�2 coordinate system, while 𝜔(𝑛)

is the incremental rigid-body rotation of the inclusion.
Under quasi-static conditions, the incremental stress field 𝑡𝑖𝑗 obeys the incremental equilibrium equations

𝑡𝑖𝑗,𝑖 = 0, (10)
and generates tractions on each inclusion providing null values for the incremental resultant forces and moment, respec-
tively,

∫𝓇(𝑛)

[[

𝑡21(�̂�1, �̂�2)
]] d�̂�1 = 0,

∫𝓇(𝑛)

[[

𝑡22(�̂�1, �̂�2)
]] d�̂�1 = 0,

∫𝓇(𝑛)

(

�̂�1 − 𝐶 (𝑛)
1 − 𝛾𝐶 (𝑛)

2

)

[[

𝑡22(�̂�1, �̂�2)
]] d�̂�1 = 0,

∀𝑛 = 1, ..., 𝑁, (11)

where the brackets [[⋅]] denote the jump of the relevant quantity across the upper and lower face of the rigid-line inclusion,
[[

𝑓
(

�̂�1, �̂�2
)]]

= lim
𝜖→0

(

𝑓
(

�̂�1, �̂�2 + |𝜖|
)

− 𝑓
(

�̂�1, �̂�2 − |𝜖|
))

. (12)
Finally, it is instrumental to recall that the incremental displacement 𝐯, the nominal stress increment �̇�, and the constitutive
tensor 𝕂 (expressed in the principal reference system 𝑥1 − 𝑥2) are related to the respective quantities (�̂�, �̂�, �̂�) in the
reference system �̂�1 − �̂�2 through the following rotation rules,

𝑣𝑖 = 𝑄𝑖𝑗 �̂�𝑗 , �̇�𝑖𝑗 = 𝑄𝑖𝑙𝑄𝑗𝑚𝑡𝑙𝑚, 𝕂𝑖𝑗ℎ𝑘 = 𝑄𝑖𝑙𝑄𝑗𝑚𝑄ℎ𝑛𝑄𝑘𝑜�̂�𝑙𝑚𝑛𝑜, (13)
where 𝑄𝑖𝑗 are the components of the rotation tensor 𝐐

[𝐐] =
[

cos 𝜃𝐸 sin 𝜃𝐸
− sin 𝜃𝐸 cos 𝜃𝐸

]

. (14)

Before moving to the boundary integral equations (presented in the next section), it is worth noting that a square root
singularity may arise in the nominal stress field at the two tips of each rigid inclusion. Following the stress intensity factor
normalization based on strain measures as in [11, 12, 13, 26, 27, 28, 37], the incremental Mode I stress intensity factors
(SIFs) �̂� (𝑛)

𝐼,𝐿 at the left and �̂� (𝑛)
𝐼,𝑅 at the right tip of the 𝑛-th rigid inclusion are given by
�̂� (𝑛)

𝐼,𝐿
�̂� (𝑛)

𝐼,𝑅

}

= lim
𝑟→0+

2𝜇
√

𝜋𝑟 �̂�1,1
(

𝐶 (𝑛)
1 + 𝛾𝐶 (𝑛)

2 ∓
(

𝑙(𝑛) + 𝑟
)

, 𝐶 (𝑛)
2

)

, (15)
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where 𝜇 is the incremental shear modulus for a shear parallel to the 𝑥1-axis, and the plus/minus sign is related to right/left
tip. Finally, it is recalled that in the case of an isolated rigid-line inclusion (𝑁=1, 𝑙(1) = 𝑙) embedded in an unbounded ma-
trix, uniformly prestressed and subject to a uniform remote incremental loading, the two tips display the same incremental
stress intensification, �̂� (1)

𝐼,𝐿 = �̂� (1)
𝐼,𝑅 = �̂� (𝑁=1)

𝐼 , corresponding to

�̂� (𝑁=1)
𝐼 = 2𝜇 �̂�∞1,1

√

𝜋𝑙. (16)

3 Integral equation formulation

The incremental displacement �̂�𝑔 at the point �̂� of a prestressed hyperelastic solid can be evaluated through the following
integral equation [5, 34, 38]

�̂�𝑔(�̂�) = ∫𝜕ℬ

(

𝑡𝑖𝑗(�̂�)�̂�𝑖(�̂�)�̂�
𝑔
𝑗 (�̂� − �̂�) − 𝑡𝑔𝑖𝑗(�̂� − �̂�)�̂�𝑖(�̂�)�̂�𝑗(�̂�)

)

d𝑙�̂�, (17)

valid for a simply connected body ℬ, subject to mixed conditions on its boundary 𝜕ℬ of unit outward normal �̂�. In
equation (17), the tensor 𝑡𝑖𝑗 is the incremental nominal stress produced by the incremental displacement field �̂�𝑗 while 𝑡𝑔𝑖𝑗
is the incremental nominal stress related to the infinite body displacement Green function �̂�𝑔𝑗 [5]

�̂�𝑔𝑗 (�̂�) = − 1
4𝜋2 ∮

|𝐦|=1

�̂�−1
𝑗𝑔 (𝐦) log |𝐦 ⋅ �̂�|d𝑠𝐦, (18)

in which �̂�𝑗𝑔(𝐦) is the acoustic tensor pertaining to the elastic body under consideration and 𝐦 is a unit vector,
�̂�𝑗𝑔(𝐦) = 𝑚𝑘�̂�𝑘𝑗ℎ𝑔𝑚ℎ. (19)

When an infinite body is subject to a remote linearly-varying displacement �̂�∞𝑔 and contains 𝑁 inclusions of domain
𝒮 (𝑛), the incremental displacement �̂�𝑔 at any point �̂� inside the medium, can be obtained from equation (17), where the
boundary of the integral is reduced to the inclusion interfaces 𝜕𝒮 (𝑛) (𝑛 = 1, ..., 𝑁)

�̂�𝑔(�̂�) = �̂�∞𝑔 (�̂�) +
𝑁
∑

𝑛=1
∫𝜕𝒮 (𝑛)

(

𝑡𝑖𝑗(�̂�)�̂�𝑖(�̂�)�̂�
𝑔
𝑗 (�̂� − �̂�) − 𝑡𝑔𝑖𝑗(�̂� − �̂�)�̂�𝑖(�̂�)�̂�𝑗(�̂�)

)

d𝑙�̂�, (20)

where �̂� is the unit normal at the matrix-inclusion interface, outward to the matrix and therefore inward to the inclusion.
Equation (20) is valid for any (compressible or incompressible) elastic material, uniformly prestressed [7, ?].

Considering that each inclusion has the shape of a zero-thickness line located as described in the previous section,
the inclusion interface 𝜕𝒮 (𝑛) reduces to

𝜕𝒮 (𝑛) = 𝓇(𝑛)+ ∪ 𝓇(𝑛)−, 𝑛 = 1, ..., 𝑁, (21)
where 𝓇(𝑛)+ and 𝓇(𝑛)− are the two major sides of the 𝑛-th inclusion of length 𝑙(𝑛) and assumed of vanishing thickness 2𝜖

𝓇(𝑛)± ∶=
{

|

|

|

�̂�1 − 𝐶 (𝑛)
1 − 𝛾𝐶 (𝑛)

2
|

|

|

≤ 𝑙(𝑛), �̂�2 = 𝐶 (𝑛)
2 ± |𝜖|

}

, 𝑛 = 1, ..., 𝑁, (22)
with corresponding unit normal �̂� defined as

�̂�|𝓇(𝑛)+ = − �̂�|𝓇(𝑛)− , with �̂�1||𝓇(𝑛)− = 0, �̂�2||𝓇(𝑛)− = 1. (23)
In the limit of vanishing inclusion thickness, 𝜖 → 0, and considering the definition of the line domain 𝓇(𝑛), equation

(3), of the unit normal �̂�, equation (23), and of the jump operator, equation (12), the integral equation (20) simplifies to

�̂�𝑔(�̂�) = �̂�∞𝑔 (�̂�) −
𝑁
∑

𝑛=1
∫𝓇(𝑛)

(

[[

𝑡2𝑗(�̂�)
]]

�̂�𝑔𝑗 (�̂� − �̂�) − 𝑡𝑔2𝑗(�̂� − �̂�)
[[

�̂�𝑗(�̂�)
]]

)

d�̂�1. (24)
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Recalling that across a rigid-line inclusion the displacement field is continuous,
[[

�̂�(�̂�)
]]

= 𝟎, for �̂� ∈ 𝓇(𝑛), 𝑛 = 1, ..., 𝑁, (25)
equation (24) finally reduces to

�̂�𝑔(�̂�) = �̂�∞𝑔 (�̂�) −
𝑁
∑

𝑛=1
∫𝓇(𝑛)

[[

𝑡2𝑗(�̂�)
]]

�̂�𝑔𝑗 (�̂� − �̂�)d�̂�1, (26)

representing the boundary integral equation valid for an infinite medium, uniformly prestressed, containing 𝑁 rigid-line
inclusions, incrementally loaded through remote incremental linear displacement �̂�∞𝑔 .

According to the rotation rule for second-order tensors, equation (13)2, the transformation between the displacement
Green functions, �̂�𝑔 in the �̂�1 − �̂�2 reference system and 𝐯𝑔 in the 𝑥1 − 𝑥2 reference system, is given by

�̂�𝑔𝑗 = 𝑄𝑙𝑗𝑄𝑘𝑔𝑣
𝑘
𝑙 , (27)

so that the boundary integral equation (26) can be rewritten as

�̂�𝑔(�̂�) = �̂�∞𝑔 (�̂�) −𝑄𝑙𝑗𝑄𝑘𝑔

𝑁
∑

𝑛=1
∫𝓇(𝑛)

[[

𝑡2𝑗(�̂�)
]]

𝑣𝑘𝑙
(

𝐐𝑇 (�̂� − �̂�)
) d�̂�1, (28)

where the superscript 𝑇 denotes the transpose operator.
The jump in the nominal stress [[𝑡2𝑗(�̂�)

]] across the 𝑁 rigid-line inclusions and the 3𝑁 rigid-body displacements (𝜂(𝑛)1 ,
𝜂(𝑛)2 , and 𝜔(𝑛)) are unknown at this stage. These quantities can be obtained by substituting the integral equation (28) into
the 3𝑁 equations of incremental equilibrium of each rigid-line inclusion, eqns (11), and into the incremental rigid-body
movement constraint (9), which can be rewritten as

�̂�∞1 (�̂�) −𝑄𝑙𝑗𝑄𝑘1

𝑁
∑

𝑛=1
∫𝓇(𝑛)

[[

𝑡2𝑗(�̂�)
]]

𝑣𝑘𝑙
(

𝐐𝑇 (�̂� − �̂�)
) d�̂�1 = 𝜂(𝑚)1 ,

�̂�∞2 (�̂�) −𝑄𝑙𝑗𝑄𝑘2

𝑁
∑

𝑛=1
∫𝓇(𝑛)

[[

𝑡2𝑗(�̂�)
]]

𝑣𝑘𝑙
(

𝐐𝑇 (�̂� − �̂�)
) d�̂�1 = 𝜂(𝑚)2 + 𝜔(𝑚)

(

�̂�1 − 𝐶 (𝑚)
1 − 𝛾𝐶 (𝑚)

2

)

,

(29)

for �̂� ∈ 𝓇(𝑛) and �̂� ∈ 𝓇(𝑚) with {𝑛, 𝑚} = 1, ..., 𝑁 .
Finally, towards the evaluation of the incremental Mode I stress intensity factor, equation (15), a differentiation of

equation (26) in the �̂�1 − �̂�2 reference system provides the gradient of incremental displacement

�̂�𝑔,𝑖(�̂�) = �̂�∞𝑔,𝑖(�̂�) −
𝑁
∑

𝑛=1
∫𝓇(𝑛)

[[

𝑡2𝑗(�̂�)
]]

�̂�𝑔𝑗,𝑖 (�̂� − �̂�) d�̂�1. (30)

According to the rotation rules, equation (13), the transformation involving the Green functions for gradient of the dis-
placement is

�̂�𝑔𝑗,𝑖 = 𝑄𝑚𝑖𝑄𝑙𝑗𝑄𝑘𝑔𝑣
𝑘
𝑙,𝑚, (31)

where the subscript 𝑚 after a comma applied to the Green function 𝐯𝑘 denotes differentiation with respect to the 𝑥𝑚–axis,
so that the boundary integral equation (30) can be rewritten as

�̂�𝑔,𝑖(�̂�) = �̂�∞𝑔,𝑖(�̂�) −𝑄𝑚𝑖𝑄𝑙𝑗𝑄𝑘𝑔

𝑁
∑

𝑛=1
∫𝓇(𝑛)

[[

𝑡2𝑗(�̂�)
]]

𝑣𝑘𝑙,𝑚
(

𝐐𝑇 (�̂� − �̂�)
) d�̂�1. (32)

Therefore, the incremental SIFs �̂�𝐼 under Mode I, equation (15), are given by

�̂� (𝑛)
𝐼,𝐿

�̂� (𝑛)
𝐼,𝑅

}

= −2𝜇𝑄𝑞1𝑄𝑙𝑗𝑄𝑘1 lim
𝑟→0+

√

𝜋𝑟
𝑁
∑

𝑚=1
∫𝓇(𝑚)

[[

𝑡2𝑗(�̂�)
]]

𝑣𝑘𝑙,𝑞
(

𝐐𝑇
(

�̂�1 − 𝐶 (𝑛)
1 − 𝛾𝐶 (𝑛)

2 ∓
(

𝑙(𝑛) + 𝑟
)

, 𝐶 (𝑚)
2 − 𝐶 (𝑛)

2

))

d�̂�1.
(33)
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4 Numerical treatment of the boundary integral equation

The collocation method is exploited to numerically solve the integral equations for the incremental equilibrium (11) and
rigid-body displacement (29) of the inclusion. A special technique has to be applied to treat the stress singularity at the
inclusion tips [19, 20]. In particular, the mixed boundary element method [10, 19, 31] is implemented here with the
use of discontinuous elements [9, 42], necessary to overcome the difficulty connected with the singularity of the traction
occurring at corner points, which correspond to the lamellae tips in our case [15, 29].

Before considering a specific collocation node positioning, the discretization for the lamellae and the related stress
jumps is introduced in general terms (Fig. 2). The 𝑛-th lamella is subdivided into 𝐸(𝑛) elements, each of length Δ(𝑛)

𝑒
(𝑒 = 1, ..., 𝐸(𝑛)), therefore

𝐸(𝑛)
∑

𝑒=1
Δ(𝑛)
𝑒 = 2𝑙(𝑛), 𝑛 = 1, ..., 𝑁, (34)

where the 𝑒-th element of 𝑛-th line inclusion is defined by the following coordinate subset (in the deformed state)
element 𝑒 of inclusion 𝑛: �̂�1 ∈

[

�̂�(𝑛)(𝑒)1 , �̂�(𝑛)(𝑒)1 + Δ(𝑛)
𝑒

]

, �̂�2 = 𝐶 (𝑛)
2 , (35)

where
�̂�(𝑛)(1)1 = 𝐶 (𝑛)

1 + 𝛾𝐶 (𝑛)
2 − 𝑙(𝑛), �̂�(𝑛)(𝑒)1 = �̂�(𝑛)(𝑒−1)1 + Δ(𝑛)

𝑒−1, 𝑒 = 2, ..., 𝐸(𝑛). (36)
Each element 𝑒 of the 𝑛-th inclusion is characterised by three nodes, with the 𝑗-th one characterized by the coordinate

Figure 2: Discretization of the 𝑛-th lamella in 𝐸(𝑛) elements (upper part) with the specification of collocation points and shape
functions (lower part). Elements are continuous quadratic except at the two tips, where semi-discontinuous elements are adopted to
capture the square-root singularity of the incremental stress.

�̂�(𝑛)(𝑒)(𝑗)1 = �̂�(𝑛)(𝑒)1 + 𝜉(𝑛)(𝑒)𝑗 Δ(𝑛)
𝑒 , 𝑗 = 1, ..., 3, (37)

where 𝜉(𝑛)(𝑒)𝑗 ∈ [0, 1] is the dimensionless coordinate of the 𝑗-th node. By introducing the nodal value of stress jump
[[

𝑡2𝑖
]](𝑛)(𝑒)(𝑗) at the 𝑗-th node of the element number 𝑒 inside the 𝑛-th rigid-line inclusion and the three respective shape

functions 𝜑(𝑛)(𝑒)
𝑗 (𝜉), the stress jump field [[

𝑡2𝑖
]] along the 𝑛-th inclusion is approximated by

[[

𝑡2𝑖
(

�̂�(𝑛)(𝑒)1 + 𝜉Δ(𝑛)
𝑒 , 𝐶 (𝑛)

2

)]]

=
3
∑

𝑗=1

[[

𝑡2𝑖
]](𝑛)(𝑒)(𝑗) 𝜑(𝑛)(𝑒)

𝑗 (𝜉), 𝜉 ∈ [0, 1], 𝑖 = 1, 2. (38)
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By means of representation (38), the incremental equations of rigid-body motion (29) are discretized at the 𝑞-th node
of the 𝑓 -th element along the 𝑚-th inclusion (𝑞 = 1, 2, 3; 𝑓 = 1, ..., 𝐸(𝑚); 𝑚 = 1, ..., 𝑁) as

�̂�∞1,1 �̂�
(𝑚)(𝑓 )(𝑞)
1 −𝑄𝑘ℎ𝑄𝑔1

𝑁
∑

𝑛=1

𝐸(𝑛)
∑

𝑒=1
Δ(𝑛)
𝑒

3
∑

𝑗=1

[[

𝑡2ℎ
]](𝑛)(𝑒)(𝑗) ×

×∫

1

0
𝜑(𝑛)(𝑒)
𝑗 (𝜉) 𝑣𝑔𝑘

(

𝐐𝑇
(

�̂�(𝑛)(𝑒)1 + 𝜉Δ(𝑛)
𝑒 − �̂�(𝑚)(𝑓 )(𝑞)1 , 𝐶 (𝑛)

2 − 𝐶 (𝑚)
2

))

d𝜉 = 𝜂(𝑚)1 ,

�̂�∞2,2 𝐶
(𝑚)
2 −𝑄𝑘ℎ𝑄𝑔2

𝑁
∑

𝑛=1

𝐸(𝑛)
∑

𝑒=1
Δ(𝑛)
𝑒

3
∑

𝑗=1

[[

𝑡2ℎ
]](𝑛)(𝑒)(𝑗) ×

×∫

1

0
𝜑(𝑛)(𝑒)
𝑗 (𝜉)𝑣𝑔𝑘

(

𝐐𝑇
(

�̂�(𝑛)(𝑒)1 + 𝜉Δ(𝑛)
𝑒 − �̂�(𝑚)(𝑓 )(𝑞)1 , 𝐶 (𝑛)

2 − 𝐶 (𝑚)
2

))

d𝜉 = 𝜂(𝑚)2 + 𝜔(𝑚)
(

�̂�(𝑚)(𝑓 )(𝑞)1 − 𝐶 (𝑚)
1 − 𝛾𝐶 (𝑚)

2

)

,

(39)
and the equations of incremental equilibrium (11) for the 𝑛-th inclusion (𝑛 = 1, ..., 𝑁) as

𝐸(𝑛)
∑

𝑒=1
Δ(𝑛)
𝑒

3
∑

𝑗=1

[[

𝑡21
]](𝑛)(𝑒)(𝑗)

∫

1

0
𝜑(𝑛)(𝑒)
𝑗 (𝜉)d𝜉 = 0,

𝐸(𝑛)
∑

𝑒=1
Δ(𝑛)
𝑒

3
∑

𝑗=1

[[

𝑡22
]](𝑛)(𝑒)(𝑗)

∫

1

0
𝜑(𝑛)(𝑒)
𝑗 (𝜉)d𝜉 = 0,

𝐸(𝑛)
∑

𝑒=1
Δ(𝑛)
𝑒

3
∑

𝑗=1

[[

𝑡22
]](𝑛)(𝑒)(𝑗)

∫

1

0

(

�̂�(𝑛)(𝑒)1 + 𝜉Δ(𝑛)
𝑒 − 𝐶 (𝑛)

1 − 𝛾𝐶 (𝑛)
2

)

𝜑(𝑛)(𝑒)
𝑗 (𝜉)d𝜉 = 0.

(40)

Equations (39) and (40) represent a linear system (whose explicit expression is reported in Appendix A) to be solved
for the unknown values of nodal stress jumps ([[𝑡21

]](𝑛)(𝑒)(𝑗) and [[

𝑡22
]](𝑛)(𝑒)(𝑗)) and of rigid-body parameters (𝜂(𝑛)1 , 𝜂(𝑛)2 , and

𝜔(𝑛)).
Once the nodal values of the stress jumps [[𝑡21

]](𝑛)(𝑒)(𝑗) are evaluated, the incremental mechanical fields are numerically
obtained and the incremental SIFs at the two tips of the 𝑛-th inclusion can be assessed via eqns (33) through the following
expression

�̂� (𝑛)
𝐼,𝐿

�̂� (𝑛)
𝐼,𝑅

}

= −2𝜇𝑄𝑞1𝑄𝑙ℎ𝑄𝑘1 lim
𝑟→0+

√

𝜋𝑟
𝑁
∑

𝑚=1

𝐸(𝑚)
∑

𝑒=1

3
∑

𝑗=1
Δ(𝑚)
𝑒

[[

𝑡2ℎ
]](𝑚)(𝑒)(𝑗) ×

×∫

1

0
𝜑(𝑚)(𝑒)
𝑗 (𝜉)𝑣𝑘𝑙,𝑞

(

𝐐𝑇
(

�̂�(𝑚)(𝑒)1 − 𝐶 (𝑛)
1 − 𝛾𝐶 (𝑛)

2 ∓ (𝑙(𝑛) + 𝑟), 𝐶 (𝑚)
2 − 𝐶 (𝑛)

2

))

d𝜉.
(41)

From the practical point of view, the collocation nodes are considered to be located in such a way that two adjacent
elements share their terminal node, so that the last node of every element coincides with the first node of the subsequent
element,

�̂�(𝑛)(𝑒+1)(1)1 = �̂�(𝑛)(𝑒)(3)1 , 𝑒 = 1, ..., 𝐸(𝑛) − 1, 𝑛 = 1, ..., 𝑁, (42)
and the discretization is symmetric along each line inclusion

Δ(𝑛)
𝑒 = Δ(𝑛)

𝐸(𝑛)−𝑒+1
, 𝑒 = 1, ..., 𝐸(𝑛). (43)

More specifically, the considered discretization involves continuous quadratic elements along the whole line inclusion
except at the two tip elements (𝑒 = 1 and 𝑒 = 𝐸(𝑛)), where semi-discontinuous elements have been used. Considering
that the quadratic shape functions 𝜑𝑗(𝜁 ) for a master element are

𝜑1(𝜁 ) =
(𝜁 − 𝜁2)(𝜁 − 𝜁3)
(𝜁1 − 𝜁2)(𝜁1 − 𝜁3)

, 𝜑2(𝜁 ) =
(𝜁 − 𝜁1)(𝜁 − 𝜁3)
(𝜁2 − 𝜁1)(𝜁2 − 𝜁3)

, 𝜑3(𝜁 ) =
(𝜁 − 𝜁1)(𝜁 − 𝜁2)
(𝜁3 − 𝜁1)(𝜁3 − 𝜁2)

, (44)
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where 𝜁 ∈ [−1, 1] is the master element coordinate and 𝜁𝑗 (𝑗 = 1, 2, 3) are the collocation points, by assuming the
collocation points located at 𝜁1 = −1, 𝜁2 = 0, 𝜁3 = 1 and through the change of variable 𝜁 = 2𝜉 − 1 ∈ [0, 1], the
collocation points and the shape functions for the continuous quadratic elements in the inner part of the lamella follow as

𝜉(𝑛)(𝑒)1 = 0, 𝜑(𝑛)(𝑒)
1 (𝜉) = 1 − 3 𝜉 + 2 𝜉2,

𝜉(𝑛)(𝑒)2 = 1
2
, 𝜑(𝑛)(𝑒)

2 (𝜉) = 4 𝜉 − 4 𝜉2,

𝜉(𝑛)(𝑒)3 = 1, 𝜑(𝑛)(𝑒)
3 (𝜉) = 2 𝜉2 − 𝜉,

𝑒 = 2, ..., 𝐸(𝑛) − 1. (45)

Differently, in order to capture the singularity at the inclusion tips, specific quarter point semi-discontinuous elements are
considered for the two tip elements (𝑒 = 1 and 𝑒 = 𝐸(𝑛)) of each inclusion in order to properly display the square-root
stress at the tips [9, 18, 45]. For the first element (𝑒 = 1), by assuming the collocation points located at 𝜁1 = −3∕4, 𝜁2 = 0,
𝜁3 = 1 and through the (nonlinear) change of variable 𝜁 = 2

√

𝜉 − 1, the collocation points and the shape functions are

𝜉(𝑛)(1)1 = 1
64

, 𝜑(𝑛)(1)
1 (𝜉) = 32

21

(

1 − 3
√

𝜉 + 2𝜉
)

,

𝜉(𝑛)(1)2 = 1
4
, 𝜑(𝑛)(1)

2 (𝜉) = −2
3

(

1 − 9
√

𝜉 + 8𝜉
)

,

𝜉(𝑛)(1)3 = 1, 𝜑(𝑛)(1)
3 (𝜉) = 1

7

(

1 − 10
√

𝜉 + 16𝜉
)

,

(46)

and, because of symmetry, for the last element (𝑒 = 𝐸(𝑛)) are

𝜉(𝑛)(𝐸
(𝑛))

𝑗 = 1 − 𝜉(𝑛)(1)4−𝑗 , 𝜑(𝑛)(𝐸(𝑛))
𝑗 (𝜉) = 𝜑(𝑛)(1)

4−𝑗 (1 − 𝜉), 𝑗 = 1, 2, 3. (47)
In all of the numerical evaluations presented in the next section, each rigid-line inclusion is discretized adopting

a minimum number of elements 𝐸(𝑛) = 45, through the following symmetric scheme. Two identical refined uniform
meshes, with a minimum number of 20 elements each, are adopted near each tip for a length 𝑙(𝑛)∕5. A coarse uniform
mesh, with a minimum number of 5 elements, is used in the central part of the inclusion (of remaining length 8𝑙(𝑛)∕5).

For the numerical computation of the incremental SIFs, a distance 𝑟 = 10−3 𝑙(𝑛) from the inclusion tips, found to be
sufficient for accurate estimation, has been considered.

5 Application to ductile metals: the J2–deformation theory of plasticity

Incompressibility. Adopting incompressibility, the fourth-order elasticity tensor 𝕂𝑖𝑗𝑘𝑙 (which satisfies the major sym-
metry 𝕂𝑖𝑗𝑘𝑙 = 𝕂𝑘𝑙𝑖𝑗) assumes under broad hypotheses the form [4]

𝕂1111 = 𝜇∗ −
𝜎
2
− Π, 𝕂1122 = −𝜇∗, 𝕂1112 = 𝕂1121 = 0,

𝕂2211 = −𝜇∗, 𝕂2222 = 𝜇∗ +
𝜎
2
− Π, 𝕂2212 = 𝕂2221 = 0,

𝕂1212 = 𝜇 + 𝜎
2
, 𝕂1221 = 𝕂2112 = 𝜇 − Π, 𝕂2121 = 𝜇 − 𝜎

2
,

(48)

where 𝜇 and 𝜇∗ are incremental shear moduli depending on the state of prestress through the in-plane deviatoric stress 𝜎,
and the mean stress Π defined as

𝜎 = 𝜎1 − 𝜎2, Π =
𝜎1 + 𝜎2

2
, (49)

being 𝜎1 and 𝜎2 the two principal values of the Cauchy prestress. In the present case, the latter is generated by a simple
shear, aligned parallel to the 𝑥1−𝑥2 reference system, which in turn is inclined at the angle 𝜃𝐸 with respect to the �̂�1− �̂�2
reference system (where �̂�1 is parallel to the inclusion line).
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Due to incompressibility, the uniform Mode I loading applied at infinity, eqn (8), is subject to the constraint
�̂�∞2,2 = −�̂�∞1,1. (50)

The incremental Green’s function 𝑣𝑘𝑙 has been obtained by Bigoni and Capuani [5] for incompressible materials under
plane strain conditions and is not repeated here for conciseness.

It is also interesting to note that the mean stress Π remains unprescribed in the following because, from the equation
(48), it affects only the relation between incremental stress and incremental displacement gradient. Indeed, the unknowns
of the boundary integral formulation are the incremental stress jumps [[𝑡21

]] and [[

𝑡22
]] from which the incremental dis-

placement components �̂�1 and �̂�2 can be evaluated through equation (26).

J2–deformation theory of plasticity. Henceforth, the interactions between shear bands and rigid-line inclusions is
analyzed by restricting the attention to a matrix material obeying the J2–deformation theory of plasticity [25], whose
nonlinear constitutive equations, when plane strain prevails, reduce to

𝜎1 − 𝜎2 = 𝜅

(

2
√

3

)𝐻+1

|

|

ln 𝜆1||
𝐻−1 ln 𝜆1, (51)

where 𝜅 is a stiffness parameter, 𝐻 ∈ (0, 1] is the hardening exponent, while 𝜆1 is the principal stretch along the 𝑥1-axis,
related to the shear prestrain 𝛾 through equation (4).

Under the assumptions of plane strain and incompressibility, the incremental moduli 𝜇 and 𝜇∗ for the J2-deformation
theory material can be obtained as [4]

𝜇 = 𝜅
2

(

2
√

3

)𝐻+1

|

|

ln 𝜆1||
𝐻−1 ln 𝜆1 coth

(

2 ln 𝜆1
)

, 𝜇∗ = 𝐻 𝜅
4

(

2
√

3

)𝐻+1

|

|

ln 𝜆1||
𝐻−1 . (52)

For the non-linear elastic material (51), failure of ellipticity and shear band formation is determined as the solution of the
nonlinear equation

𝐻 = ln 𝜆𝐸𝐿
1 tanh

(

ln 𝜆𝐸𝐿
1

)

, (53)
for the critical stretch 𝜆𝐸𝐿

1 at the ellipticity loss, corresponding to the critical level of shear prestrain 𝛾𝐸𝐿.
When the elliptic boundary is approached, two shear bands are predicted to emerge for a J2-deformation theory

material, inclined at the angles ±𝜃0 with respect to the principal axis 𝑥1
𝜃0 =

𝜋
2
− arctan 𝜆𝐸𝐿

1 . (54)

Finally, it is worth to note that
𝜃𝐸 ≡ 𝜃0 for 𝜆1 > 1, (55)

therefore, one shear band direction is perfectly aligned with the inclusion axis, while the other is inclined twice the
(anti-clockwise) angle 𝜃𝐸 with respect to inclusion line.

5.1 Validation of the boundary integral formulation

The developed boundary integral method is validated here through a comparison with available analytical solutions re-
ferring to two simple cases in which the matrix material is prestressed, but there is only one inclusion, or there are two
inclusions, but the matrix material is in an unloaded state.
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5.1.1 An isolated rigid-line inclusion in a prestressed material

The numerical methodology developed from the presented formulation is compared with the analytical solution obtained
in [12] for an isolated rigid-line inclusion (𝑁=1), embedded in an infinite incompressible material, prestressed through
a simple shear, and subject to a uniform Mode I perturbation.

The mechanical state near the lamella is characterized in terms of its rigid-body rotation Γ(1) = 𝜔(1)∕�̂�∞1,1 and of the
incremental nominal shear stress jump [[

𝑡21
]]

∕(𝜇 �̂�∞1,1) measured across it, as the result of the applied perturbation. These
two quantities are reported in Figure 3 for a J2–deformation theory material with hardening exponent 𝐻 = 0.4, for which
ellipticity is lost at an amount of shear 𝛾𝐸𝐿 ≈ 1.462, and the shear band inclination is 𝜃0 ≈ 0.150𝜋.

In the figure, the stress jump [[

𝑡21
]] is reported as a function of the coordinate �̂�1∕𝑙, for a prestrain 𝛾 = 0.992𝛾𝐸𝐿 ≈

1.45. The rigid-body rotation Γ(1) is reported as a function of the prestrain 𝛾∕𝛾𝐸𝐿 ∈ [−1, 1]. The numerical solution
(dashed line) practically coincides with the analytical one (continuous line), except at the node shared by the two external
elements, characterized by different shape functions and representing the transition from the semi-discontinuous to the
continuous quadratic element. This reveals that the latter struggles to fit in with the sharp turn due to the square-root
singularity at the tip (see the detail at the centre of Figure 3). Although this visible gap delays the solution convergence
only at that node, it can be reduced by further decreasing the mesh size there.

●

●

●

●

●
●

●●●●●●●●●●●●●●

0

t
m

21[[

[[
x
l/1̂

-1 1
x
l/1̂

10.95 0.975

0

20

40

-40

-20

0

-40

-30

-20

-10

Analytical solution [12]

Present nodal solution

Analytical solution [12]

Present solution

1.0-1.0

0

-0.4

-0.2

0.2

0.4

0

Analytical solution [12]

Present solution

G
(1)

g

v
1,1
^

^

∞ t
m

21[[

[[

v
1,1
^

^

∞

g"#

Figure 3: Validation of the proposed numerical methodology in the case when only one rigid-line inclusion is present in an infinite,
prestrained matrix (characterized by an incremental shear modulus 𝜇), obeying the J2–deformation theory of plasticity with 𝐻 = 0.4
and subject to a remote incremental strain �̂�∞1,1. Numerical simulations (dashed line) and analytical results (continuous line) are
practically coincident, showing the effectiveness of the proposed technique. Left (and detail on the central part): jump in the nominal
shear stress [[𝑡21

]] across the lamella for 𝛾 = 1.45 ≈ 0.992𝛾𝐸𝐿 versus the dimensionless lamella coordinate �̂�1∕𝑙. Right: the rigid-
body rotation Γ(1) = 𝜔(1)∕�̂�∞1,1 displayed by the lamella as a function of the prestrain amount 𝛾 .

5.1.2 Two collinear rigid-line inclusions in a linear isotropic incompressible material (at null prestress)

A second validation of the proposed technique is performed through a comparison referring to the case of a linear elastic
isotropic incompressible material at null prestress, which can be recovered from the J2–deformation theory by assuming
an hardening exponent equal to the unity, 𝐻 = 1, and a null prestrain, 𝛾 = 0. The presence of two, 𝑁 = 2, collinear
rigid-line inclusions of equal length is considered following the scheme presented in Fig. 4, now to be considered only
in the case of the undeformed configuration (on the left in the figure). The geometry is specified by

𝐶 (2)
1 = 𝐶 (1)

1 +𝐷, 𝐶 (2)
2 = 𝐶 (1)

2 , Φ = 0, 𝑙(1) = 𝑙(2) = 𝑙, (56)
where 𝐷 > 2𝑙 defines the distance between the inclusion centroids 𝐂(1) and 𝐂(2), the angle Φ is the inclination of the line
joining the inclusion centers with respect to the �̂�1-axis, and 𝑙 is the semi-length, equal for both inclusions.
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Figure 4: Undeformed (left) and deformed (right) configurations of two parallel rigid-line inclusions embedded in an infinite matrix
material subject to a simple shear of amount 𝛾 parallel to the horizontal axis. The relative position of two lamellae is described by the
distance 𝐷 between their centroids, points 𝐂(1) and 𝐂(2), and the angle Φ in the undeformed configuration, transformed respectively
into 𝑑, 𝐜(1), 𝐜(2), and 𝜙 after deformation.

Due to the symmetry of both geometry and loading, the incremental Mode I SIFs, eqns (15), referred to the four tips,
satisfy the following identities

�̂� (2)
𝐼,𝐿 = �̂� (1)

𝐼,𝑅 = �̂� (𝑁=2)
𝐼,𝑖𝑛𝑛 , �̂� (2)

𝐼,𝑅 = �̂� (1)
𝐼,𝐿 = �̂� (𝑁=2)

𝐼,𝑜𝑢𝑡 , (57)

where �̂� (𝑁=2)
𝐼,𝑖𝑛𝑛 and �̂� (𝑁=2)

𝐼,𝑜𝑢𝑡 are the incremental SIF at the inner and outer tips respectively, obtained analytically as [41]

�̂� (𝑁=2)
𝐼,𝑜𝑢𝑡

�̂� (𝑁=2)
𝐼,𝑖𝑛𝑛

⎫

⎪

⎬

⎪

⎭

= 𝜇�̂�∞1,1

√

𝑙
𝜋 ∫

1

−1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 + 1

2 − 1
2

(

√

𝐷
𝑙

(

𝐷
𝑙
+ 2

)

−
√

𝐷
𝑙

(

𝐷
𝑙
− 2

)

)

𝜁 + 𝐷
𝑙

√

(

𝜁 + 𝐷
𝑙

)2
− 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

√

1 ± 𝜁
1 ∓ 𝜁

d𝜁. (58)

The SIFs �̂� (𝑁=2)
𝐼,𝑖𝑛𝑛 and �̂� (𝑁=2)

𝐼,𝑜𝑢𝑡 are plotted in Figure 5, normalized through division by the corresponding quantity �̂� (𝑁=1)
𝐼holding for the single inclusion, eqn (16). An excellent agreement is shown between the analytical values (continuous

line) from eqn (58) and the numerical evaluation (spots) from the present boundary integral technique.

5.2 Interactions between shear bands and rigid lamellae

The developed formulation is exploited to analyze the incremental mechanical response to a remote Mode I perturbation,
uniform at a large distance from the lamellae, when the matrix material (characterized by hardening exponent 𝐻 = 0.4) is
prestrained up to a level close to ellipticity loss, 𝛾 = 0.992𝛾𝐸𝐿. Consideration of this prestress state allows for the analysis
of shear band formation and interaction. It is recalled that, in the case of an isolated rigid-line inclusion, the shear band
direction aligned with the lamella axis is dominant, while the other, developed in the conjugate direction, remains ‘weaker’
[12, 13]. This pattern is considered in the following as a reference state to disclose the influence on shear bands of various
distributions of lamellae. To this purpose, recalling that the incremental strain �̂� is the symmetric part of the incremental
displacement gradient, �̂�𝑖𝑗 = (�̂�𝑖,𝑗 + �̂�𝑗,𝑖)∕2, and it is deviatoric because of incompressibility (dev�̂� = �̂�), the results are
reported in terms of the modulus of the perturbed incremental strain, |

|

�̂� − �̂�∞|

|

, where the (colored) contours scale is the
same for all Figs. 6, 7, 9, and 14 and is such that red corresponds to regions where |

|

�̂� − �̂�∞|

|

> 2.6 |
|

�̂�∞|

|

.
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Inner Tip

Outer Tip

Present Analytical
solution solution [41]

Figure 5: Validation of the proposed numerical methodology in the case of two collinear rigid-line inclusions, embedded in an
infinite, unloaded matrix, obeying incompressible, isotropic elasticity. Incremental Stress Intensity Factors �̂� (𝑁=2)

𝐼 (divided by
�̂� (𝑁=1)

𝐼 = 2𝜇 �̂�∞1,1
√

𝜋𝑙) are reported for the outer (blue) and inner (green) tips of two lamellae of length 2𝑙, as functions of the
distance 𝐷 between their centers. Numerical simulations (spots) are almost superimposed on the available analytical solution (line),
eqn (58), showing the effectiveness of the proposed technique.

5.2.1 Prestressed matrix with two rigid-line inclusions

The interaction between two rigid lamellae (𝑁 = 2), characterized by different length and embedded in a ductile metal
matrix is considered, when a Mode I incremental perturbation is applied, superimposed upon a certain prestress induced
by a simple shear loading of finite amount. The position of the two rigid inclusions is defined by introducing the following
relations between the coordinates of the inclusion centroids in the undeformed configuration (Fig. 4, left)

𝐶 (2)
1 = 𝐶 (1)

1 +𝐷 cosΦ, 𝐶 (2)
2 = 𝐶 (1)

2 +𝐷 sinΦ, with
{

𝐷 > 0, if Φ ≠ 0,
𝐷 > 𝑙(1) + 𝑙(2), if Φ = 0, (59)

where 𝐷 is the distance between the two centers of the rigid inclusions and Φ is the angle measuring the inclination of
the line joining the two centers with respect to the �̂�1-axis. Subject to a simple shear deformation, the configuration of the
rigid inclusions changes, so that the centroid coordinates 𝑐1, 𝑐2, singling out the deformed configuration, become (Figure
4, right)

𝑐(2)1 = 𝑐(1)1 + 𝑑 cos𝜙, 𝑐(2)2 = 𝑐(1)2 + 𝑑 sin𝜙, (60)
where 𝑑 and 𝜙 are respectively the distance and the inclination, related to the initial values 𝐷 and Φ through the amount
of shear 𝛾 as

𝑑(𝐷,Φ, 𝛾) = 𝐷
√

1 + 𝛾 sin 2Φ + 𝛾2 sinΦ, 𝜙(Φ, 𝛾) = arctan
(

sinΦ
cosΦ + 𝛾 sinΦ

)

. (61)

Because of the polar symmetry, the fields calculated for the initial angle Φ−𝜋 are identical to those calculated for the
angle Φ and therefore the investigation is restricted to Φ ∈ [0, 𝜋). Furthermore, elementary geometrical considerations
lead to the observation that when 𝐷 > 𝑙(1) + 𝑙(2) (when 𝐷 < 𝑙(1) + 𝑙(2)) the mechanical response is continuous (is
discontinuous) at Φ = 0 and Φ = 𝜋. The above described layout is analyzed in the following for specific geometries, so
to dissect the respective influences of the various parameters.
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Two rigid-line inclusions with centers aligned on the same vertical axis in the undeformed state (Φ = 𝜋∕2). The
modulus of the perturbed incremental strain |

|

�̂� − �̂�∞|

|

is reported in Fig. 6 in the surroundings of two rigid-line inclusions.
The latter have the inclusion centers aligned vertically in the undeformed state, so that the configuration is described by
equation (60) with Φ = 𝜋∕2. The prestrain level is 𝛾 ≈ 0.992𝛾𝐸𝐿 and the inclusions are analyzed at varying distance
𝐷 = {0.04, 0.2, 0.5}𝑙 (decreasing from the upper to the lower part of the figure). The cases of inclusions with same length
(𝑙(1) = 𝑙(2) = 𝑙) and with different length (𝑙(1) = 2𝑙(2) = 𝑙) are reported on the left and on the right, respectively. Both
cases show that, for a prestrain state close to the loss of ellipticity, the deviatoric strain is localized into two principal
shear bands parallel to the inclusion lines. These two shear bands, when the two inclusions are sufficiently close, ‘merge’
in one thick shear band, completely enclosing both inclusions.

Figure 6: Level sets of the modulus of the perturbed incremental strain |

|

�̂� − �̂�∞|

|

near two lamellae at three different distances 𝐷∕𝑙 =
{0.04, 0.2, 0.5} (decreasing from the upper to the lower part) and angle Φ = 𝜋∕2, for a simple shear prestrain level 𝛾 = 0.992𝛾𝐸𝐿,
after a Mode I remote perturbation. The two lamellae have the same length (𝑙(1) = 𝑙(2) = 𝑙, left column) or one length is twice the
other (𝑙(1) = 2𝑙(2) = 𝑙, right column). Note that when the lamellae are close enough to each other a thick horizontal shear band
prevails, involving both rigid-lines.

Two collinear rigid-line inclusions of different length (Φ = 0). Two collinear inclusions with different length, namely,
𝑙(1) = 5𝑙(2) = 5𝑙, are analyzed at varying distance 𝐷. The modulus of the perturbed incremental strain |

|

�̂� − �̂�∞|

|

is reported
in Fig. 7 for 𝐷 = {11, 8, 7}𝑙 (decreasing from the upper to the lower part). The figure shows that, when the tips of the
two inclusions are sufficiently close to each other, the two principal shear bands concur to generate one very long shear
band, completely enclosing both inclusions.

Two rigid-line inclusions of equal length (𝑙(1) = 𝑙(2) = 𝑙). The case of two inclusions with same length is analyzed at
varying reciprocal distance 𝐷 and angle Φ.

It is interesting to note that the values of inclination Φ and distance 𝐷 also define the position of one inclusion in
relation to the two shear bands inclined at 2𝜃0 with respect to �̂�1 and originating at the tips of the other inclusion in
the simple shear deformation state. In particular, three special inclinations, Φ̃, Φ(−), and Φ(+), can be defined as those
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Figure 7: Level sets of the modulus of the perturbed incremental strain |

|

�̂� − �̂�∞|

|

near two collinear (Φ = 0) lamellae of length
𝑙(1) = 5𝑙(2) = 5𝑙 at three different distances 𝐷∕𝑙 = {7, 8, 11} (decreasing from above to bottom), for a simple shear prestrain level
𝛾 = 0.992𝛾𝐸𝐿, after a Mode I remote perturbation. Note that when the lamellae are close enough to each other a very long shear
bands prevails, involving both rigid-lines.

satisfying the relations2

Φ̃ = arctan
(

− 2
𝛾𝐸𝐿

)

, 𝐷
2𝑙

[

cosΦ(±) − sinΦ(±)

tan Φ̃

]

= ±1, (62)
and discriminating the following two interesting cases.

• When Φ = Φ̃, both tips of each inclusion touch the inclined shear bands originated from the tips of the other
inclusion. Therefore, each inclusion is enclosed inside the domain defined by the inclined shear bands originated
from the tips of the other inclusion;

• When either Φ = Φ(+)(𝐷∕2𝑙) or Φ = Φ(−)(𝐷∕2𝑙), only one tip of each inclusion touches the inclined shear band
originated from the tip of the other inclusion.

The above-introduced three ‘special’ inclinations divide the 𝐷∕2𝑙 − Φ plane into four domains (Fig. 8):

 (+) ∶=
{

{𝐷,Φ} such that |

|

|

|

cosΦ − sinΦ
tan Φ̃

|

|

|

|

> 2𝑙
𝐷

and 0 < Φ < Φ̃
}

,

 (−) ∶=
{

{𝐷,Φ} such that |

|

|

|

cosΦ − sinΦ
tan Φ̃

|

|

|

|

> 2𝑙
𝐷

and Φ̃ < Φ < 𝜋
}

,

2The identity 𝛾𝐸𝐿 tan 2𝜃0 = 2 is exploited to obtain eqns (62) together with the following properties
Φ(+) < Φ̃ < Φ(−), Φ̃ > 𝜋∕2.
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Figure 8: ‘Special’ inclination angles
(

Φ̃,Φ(−),Φ(+)
)

and domains ( (+),  (−),(+),(−)) in the Φ − 𝐷∕2𝑙 plane, distinguishing
(in the prestressed configuration) the position of one lamella with respect to the inclined shear band emerging from the tip of the
other rigid-line. The plot refers to a J2-deformation theory material with hardening exponent 𝐻 = 0.4.

(+) ∶=
{

{𝐷,Φ} such that |

|

|

|

cosΦ − sinΦ
tan Φ̃

|

|

|

|

< 2𝑙
𝐷

and 0 < Φ < Φ̃
}

,

(−) ∶=
{

{𝐷,Φ} such that |

|

|

|

cosΦ − sinΦ
tan Φ̃

|

|

|

|

< 2𝑙
𝐷

and Φ̃ < Φ < 𝜋
}

,

corresponding to prestressed configurations (at the ellipticity loss) where each inclusion lies partially inside ((+) and
(−)) or completely outside ( (+) and  (−)) the strip region defined by the inclined shear bands originated from the tips
of the other inclusion.

Due to polar symmetry, the incremental rigid-body rotations of the two inclusions coincide
𝜔(1) = 𝜔(2) = 𝜔(𝑁=2) = Γ(𝑁=2)�̂�∞1,1, (63)

where Γ(𝑁=2) is the dimensionless rotation, and two of the four incremental SIFs at the lamellae tips, eqn (15), are
coincident

�̂� (2)
𝐼,𝑅 = �̂� (1)

𝐼,𝐿, �̂� (2)
𝐼,𝐿 = �̂� (1)

𝐼,𝑅. (64)
The influence of the inclusions’ position with respect to the inclined shear bands is highlighted through the map of

the modulus of the perturbed incremental strain |

|

�̂� − �̂�∞|

|

in Fig. 9 and through the sketch of the incrementally deformed
configurations in Fig. 10. In particular, the latter figure reports the incremental deformed configurations due to the Mode
I perturbation for a mesh of identical squares in the undeformed state. In both figures, the centroids distance is constant,
𝐷 = 2𝑙, while three values for the angle Φ are considered: Φ(+) = 0.399𝜋 (left), Φ = 0.550𝜋 ∈ (Φ(+), Φ̃) (center), and
Φ̃ = 0.700𝜋 (right).

For Φ = 0.550𝜋 (Figs. 9 and 10, central parts) an inclined shear band, emanating from right tip of the lower rigid-
line, intersects the central part of the upper lamella. The intersecting shear band results to be thin, so that a shear band
intersecting a rigid lamella suffers a reduction in ‘intensity’.

An opposite situation is visible for Φ(+) and Φ̃ (Figs. 9 and 10, on the left and right). Here, the tips of the upper
and lower lamellae are respectively aligned along one or two inclined shear bands, resulting in a strong amplification.
More specifically, the case of the alignment of one tip pair (Φ(+)) is substantially different from that of two tip pairs (Φ̃).
Indeed, the aligned tips have opposite incremental displacement in the former case, becoming concordant in the latter.
This implies that the incremental rigid-body rotation Γ(𝑁=2) for the geometry Φ̃ is much larger than that pertaining to the
case characterized by Φ(+).
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Figure 9: Level sets of the modulus of the perturbed incremental strain |

|

�̂� − �̂�∞|

|

near two lamellae at a distance 𝐷 = 2𝑙, relative
to three different angles Φ =

{

Φ(+) = 0.399𝜋, 0.550𝜋, Φ̃ = 0.700𝜋
}

(from left to right), for a simple shear prestrain level 𝛾 =
0.992𝛾𝐸𝐿, after a Mode I remote perturbation. A strengthening of one or two inclined shear bands is visible in the left or right case,
respectively, while a weakening can be observed in the central case.

Figure 10: Incremental deformed configurations after Mode I remote perturbation for a mesh of identical squares in the undeformed
state. The results shown in this figure correspond to the maps reported in Fig. 9.

To further confirm this behaviour, the incremental rotation Γ(𝑁=2) (normalized through division by the corresponding
rotation calculated for an isolated lamella, Γ(𝑁=1) = 𝜔(𝑁=1)∕�̂�∞1,1) is reported in Fig. 11, as a function of the distance 𝐷
(at fixed angle Φ, left) and of the angle Φ (at fixed distance 𝐷, right). The special distributions corresponding to the
alignment of one tip pair (Φ(+) and Φ(−)), or two tip pairs (Φ̃), are also reported as dashed curves. In the former case, the
rigid-body rotation attains its maximum value, while in the latter the rotation reaches a value close to a relative minimum.
Interestingly, when the two lamellae are collinear (Φ = 0), the incremental rotation results unaffected by the distance
𝐷 > 2𝑙 and assumes the same value corresponding to that characteristic of the isolated inclusion, Γ(𝑁=2)(Φ = 0) = Γ(𝑁=1).

The above discussion is completed with the analysis of the two incremental SIFs �̂� (1)
𝐼,𝐿 and �̂� (1)

𝐼,𝑅 displayed in Fig. 12
(respectively on the upper and lower part), as functions of the distance 𝐷 (at a specific angle Φ, left) and of the angle Φ
(at a specific distance 𝐷, right). These curves are complemented by those reported as dashed curves and corresponding
to the special geometries involving the alignment of one tip pair (Φ(+) and Φ(−)) and of two tip pairs (Φ̃). From these
curves, it can be observed that �̂� (1)

𝐼,𝐿 (�̂� (1)
𝐼,𝑅) is almost constant and close to the value �̂� (𝑁=1)

𝐼 pertaining to the isolated
inclusion, when Φ ∈ (Φ̃, 𝜋) (Φ ∈ (0, Φ̃)). This behaviour is consequent to the fact that the singular field at the relevant
tip is unaffected by those belonging to the other lamella, which is shielded by the inclined shear band.

Moreover, �̂� (1)
𝐼,𝐿 and �̂� (1)

𝐼,𝑅 attain a local maximum for the special geometry respectively defined by Φ = Φ(+) and
Φ = Φ(−). This is related to the special alignments between tip pairs, as shown in Fig. 8.

Finally, the incremental SIFs display a strong variation near Φ = Φ̃, because the corresponding geometry is close to
the alignment of two tip pairs.
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Figure 11: Incremental rigid-body rotation, Γ(1) = Γ(2) = Γ(𝑁=2) (normalized through division by Γ(𝑁=1)), as a function of the
dimensionless distance 𝐷∕2𝑙 for two lamellae of equal length at different angles Φ = {0, 1∕4, 1∕2, 3∕4}𝜋 (left) and as a function of
the angle Φ, at different distances 𝐷∕𝑙 = {1∕2, 1, 2, 4, 8} (right). Values corresponding to the special geometries of aligned tips are
reported as dashed curves, showing that the case Φ = Φ̃ provides the maximum rotation, while the cases Φ(+) and Φ(−) correspond
to a rotation close to a relative minimum.

5.3 Amplification, reduction, and shielding of shear bands pattern for multiple inclusions

Interactions between lamellae are now investigated for four different polar symmetric distributions of 𝑁 = 4 and 𝑁 = 5
inclusions, as reported in Fig. 13, at the simple shear prestrain level 𝛾 = 0.992𝛾𝐸𝐿. The purpose of the investigation
is to cover all the possible different geometric conditions (Φ̃,Φ(+),Φ(−),(+),(−),  (+),  (−)), involving different pairs
of inclusions. More specifically, four polar symmetric distributions are analyzed, satisfying the following geometrical
conditions in the prestressed state:
Fig. 13a) – four inclusions of length 2𝑙 are positioned following a scheme of two lines and two inclined columns, where

each inclusion has both tips aligned along a line corresponding to the inclined shear bands that develop upon
application of the perturbation (geometric conditions Φ̃,  (+),  (−));

Fig. 13b) – a fifth inclusion of length 2𝑙 is added in the middle of the distribution a) of lamellae. The central lamella has
its tips aligned along the direction of the inclined shear bands emanating, upon application of the perturba-
tion, from the tips of other two inclusions (geometric conditions Φ̃, Φ(+), Φ(−),  (+),  (−));

Fig. 13c) – the five inclusions of distribution b) are shifted in their horizontal position so that the inclusion tips are no
longer aligned with respect to the shear band directions (geometric conditions (+), (−),  (+),  (−));

Fig. 13d) – the distribution b) of lamellae is modified by elongating the central inclusion to a length 6𝑙, so that both
tips of this longer lamella are aligned along the two inclined shear bands emanating, upon application of
the perturbation, from the outer tips of the other four smaller inclusions (geometric conditions Φ̃, (+), (−),
 (+),  (−)).

Because of polar symmetry, the following identities hold for the incremental rotations and stress intensity factors
Γ(𝑛+2) = Γ(𝑛), �̂� (𝑛+2)

𝐼,𝑅 = �̂� (𝑛)
𝐼,𝐿, �̂� (𝑛+2)

𝐼,𝐿 = �̂� (𝑛)
𝐼,𝑅, �̂� (5)

𝐼,𝑅 = �̂� (5)
𝐼,𝐿, 𝑛 = 1, 2. (65)

Maps of the modulus of the perturbed incremental strain |

|

�̂� − �̂�∞|

|

are reported in Fig. 14 for the four distributions of
lamellae shown in Fig. 13, while the corresponding values of incremental rotations Γ(𝑛) and incremental stress intensity
factors �̂� (𝑛)

𝐼,𝐿 are listed in Table 1, normalized through division by the corresponding quantity calculated for one lamella of
length 2𝑙, Γ(𝑁=1) and �̂� (𝑁=1)

𝐼 . From the figure and the table it can be concluded that the mechanical response is strongly
affected by the inclusion distribution, and in particular:
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Figure 12: Incremental stress intensity factors �̂� (1)
𝐼,𝐿 (upper part) and �̂� (1)

𝐼,𝑅 (lower part), divided by the value pertaining to one
inclusion �̂� (𝑁=1)

𝐼 , as functions of the dimensionless distance 𝐷∕2𝑙 (at a specific angle Φ = {0, 1∕4, 1∕2, 3∕4}𝜋) and of the angle Φ
(at a specific distance 𝐷 = {1∕2, 1, 2, 4, 8}𝑙). Values corresponding to the special geometries of alignment of one tip pair (Φ(+) and
Φ(−)) and of two tip pairs (Φ̃) are reported as dashed curves.
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Figure 13: The four considered polar symmetric distributions of thin inclusions (𝑁 = 4 or 𝑁 = 5) in the deformed configuration
after a simple shear of amount 𝛾 = 0.992𝛾𝐸𝐿.
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Γ(𝑛)

Γ(𝑁=1)

�̂� (𝑛)
𝐼,𝐿

�̂� (𝑁=1)
𝐼

distribution𝑛-th lamella 1 & 3 2 & 4 5 1 2 3 4 5
a) 1.406 1.403 - 0.920 0.956 0.965 0.920 -
b) 1.185 1.178 0.274 0.989 1.043 1.083 1.092 1.360
c) 1.366 1.365 0.835 0.914 0.952 0.960 0.916 1.051
d) 1.374 1.252 1.426 0.880 1.166 0.794 0.788 1.493

Table 1: Values of incremental rotations Γ(𝑛) and incremental stress intensity factors �̂� (𝑛)
𝐼,𝐿 affecting the 𝑛-th lamella, for

the four lamellae distributions reported in Fig. 13, normalized through division by the corresponding value (Γ(𝑁=1) and
�̂� (𝑁=1)

𝐼 ) for the isolated lamella of length 2𝑙.

• Compared with the shear band patterns developed for distribution a)
– the inner inclined shear bands are:

∗ weakened for distribution b), because of the occurrence of the geometric conditions Φ(+) and Φ(−);
∗ annihilited for distributions c) and d), because of the occurrence of the geometric conditions (+) and

(−);
– the outer inclined shear bands are:

∗ unchanged for distribution b);
∗ weakened for distribution c), because the geometric condition Φ̃ does not hold;
∗ amplified for distribution d), because of the occurrence of the geometric condition Φ(+) involving small

lamellae and the larger one.
• Compared with the incremental rigid-body rotations occurring for distribution a):

– the rotations of the non-central lamellae (𝑛=1,2,3,4) of distribution b) are reduced due to the occurrence of
geometric condition Φ(+) or Φ(−) with the central inclusion (𝑛=5);

– The rotation of the central lamella (𝑛=5) is approximately equal to the rotation of each of the lateral lamellae
(𝑛=1,2,3,4) in distribution d). Moreover, the modulus of the perturbed incremental strain |

|

�̂� − �̂�∞|

|

is almost
constant in the region enclosed by the two outer inclined shear bands. It follows that, roughly speaking, the
portion of solid enclosed between the two outer inclined shear bands, and encompassing all the five lamellae,
approximately displays an incremental rigid-body rotation.

• With reference to the incremental stress intensity factors:
– according to the case of two equal inclusions, for the geometric condition Φ̃ (Fig. 12, left), the values of �̂� (𝑛)

𝐼,𝐿

for distribution a) are a bit smaller than �̂� (𝑁=1)
𝐼 ;

– similarly to the case of two equal inclusions, for the geometric condition Φ(+) (Fig. 12, left), the value of �̂� (5)
𝐼,𝐿

for distribution b) is greater than �̂� (𝑁=1)
𝐼 ;

– because the stress intensity factor is proportional to the square root of the lamella’s length, eqn (16), �̂� (5)
𝐼,𝐿

(referred to a lamella of length 6𝑙) for distribution d) is greater than �̂� (𝑁=1)
𝐼 (referred to a lamella of length

2𝑙).
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Figure 14: Level sets of the modulus of the perturbed incremental strain |

|

�̂� − �̂�∞|

|

near the four distributions of lamellae reported
in Fig. 13, at a shear prestrain amount 𝛾 = 0.992𝛾𝐸𝐿, close to the boundary of ellipticity loss.

6 Conclusions

A specifically-derived boundary integral equation has been shown to provide a highly detailed description of the incre-
mental strain fields near complex distributions of rigid-line inclusions, embedded in a matrix material. The latter is
modelled according to the J2–deformation theory of plasticity and is subject to a simple shear of finite amount, before the
application of a Mode I perturbation. The amount of shear can be high enough to bring the matrix material near failure of
ellipticity, where the nucleation and growth of shear bands can be analyzed. This analysis reveals a series of new features
related to the failure of a ductile material through shear bands, in particular, mechanisms of weakening or strengthening
of shear bands caused by their interactions with the lamellae.

Although developed under quasi-static conditions, the present approach is more general than it might appear. Indeed, it
can be extended to analyse the dynamic interaction between multiple lamellae and also to three-dimensional distributions
[1, 43, 44], exploiting the Green’s function provided by Argani et al. [2].
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A Linear system for the evaluation of nodal stress jumps and rigid-body parameters

In order to provide the explicit expression for the linear system given by equations (39) and (40), it is instrumental to
introduce the numbering of the nodes belonging to each inclusion, so that the 𝑝-th inclusion node along the 𝑛-th inclusion
is defined by coordinates

{

�̂�(𝑛)[𝑝]1 , 𝐶 (𝑛)
2

}

(𝑝 = 1, ..., 𝑃 (𝑛), being 𝑃 (𝑛) the number of nodes of the 𝑛-th inclusion). Defining
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𝑃 as the total number of nodes,
𝑃 =

𝑁
∑

𝑛=1
𝑃 (𝑛), (A.1)

the linear system, with rank 2𝑃+3𝑁 , can be written as
[

 
 𝟎

] [

𝐓
𝐖

]

=
[

𝐕∞

𝟎

]

, (A.2)

where vectors 𝐓 and 𝐖

𝐓 =
[

𝐓(1), ... ,𝐓(𝑛), ... ,𝐓(𝑁)]𝑇 , 𝐖 =
[

𝐖(1), ... ,𝐖(𝑛), ... ,𝐖(𝑁)]𝑇 , (A.3)
gather vectors 𝐓(𝑛) and 𝐖(𝑛), respectively defined as the collection of the 2𝑃 (𝑛) nodal incremental stress jumps and the 3
rigid-body incremental displacements of the 𝑛-th inclusion (𝑛 = 1, ..., 𝑁)

𝐓(𝑛) =
[

[[

𝑡21
]](𝑛)[1] , ... ,

[[

𝑡21
]](𝑛)[𝑝] , ... ,

[[

𝑡21
]](𝑛)

[

𝑃 (𝑛)]

,
[[

𝑡22
]](𝑛)[1] , ... ,

[[

𝑡22
]](𝑛)[𝑝] , ... ,

[[

𝑡22
]](𝑛)

[

𝑃 (𝑛)]]

,

𝐖(𝑛) =
[

𝜂(𝑛)1 , 𝜂(𝑛)2 , 𝜔(𝑛)
]

,
(A.4)

where [[

𝑡2ℎ
]](𝑛)[𝑝] is the nodal stress jump across the lamella at node 𝑝 of the 𝑛-th inclusion (ℎ = 1, 2). Moreover, vector

𝐕∞ =
[

𝐕∞(1), ... ,𝐕∞(𝑛), ... ,𝐕∞(𝑁)]𝑇 , (A.5)
collects vectors 𝐕∞(𝑛) defined as (𝑛 = 1, ..., 𝑁)

𝐕∞(𝑛) =
[

�̂�∞1,1 �̂�
(𝑛)[1]
1 , ... , �̂�∞1,1 �̂�

(𝑛)[𝑝]
1 , ... , �̂�∞1,1 �̂�

(𝑛)
[

𝑃 (𝑛)]

1 , 𝐶 (𝑛)
2 �̂�∞2,2, ... , 𝐶

(𝑛)
2 �̂�∞2,2, ... , 𝐶

(𝑛)
2 �̂�∞2,2

]

. (A.6)
Finally, the coefficient matrices  , , and  in equation (A.2) are given by

 =

⎡

⎢

⎢

⎢

⎣

 (1)(1)  (1)(2) ...  (1)(𝑁)

 (2)(1)  (2)(3) ...  (2)(𝑁)

⋮ ⋮ ⋱ ⋮
 (𝑁)(1)  (𝑁)(2) ...  (𝑁)(𝑁)

⎤

⎥

⎥

⎥

⎦

,  =

⎡

⎢

⎢

⎢

⎣

(1) 0 ... 0
0 (2) ... 0
⋮ ⋮ ⋱ ⋮
0 0 ... (𝑁)

⎤

⎥

⎥

⎥

⎦

,  =

⎡

⎢

⎢

⎢

⎣

(1) 0 ... 0
0 (2) ... 0
⋮ ⋮ ⋱ ⋮
0 0 ... (𝑁)

⎤

⎥

⎥

⎥

⎦

,

(A.7)
with (𝑝 = 1, ..., 𝑃 (𝑛); 𝑞 = 1, ..., 𝑃 (𝑚))

 (𝑚)(𝑛) =

[

 (𝑚)(𝑛)
11  (𝑚)(𝑛)

12
 (𝑚)(𝑛)

21  (𝑚)(𝑛)
22

]

,  (𝑚)(𝑛)
𝑙ℎ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢(𝑚)(𝑛)[1][1]𝑙ℎ ... 𝑢(𝑚)(𝑛)[1][𝑝]𝑙ℎ ... 𝑢(𝑚)(𝑛)[1]
[

𝑃 (𝑛)]

𝑙ℎ
⋮ ⋱ ⋮ ⋱ ⋮

𝑢(𝑚)(𝑛)[𝑞][1]𝑙ℎ ... 𝑢(𝑚)(𝑛)[𝑞][𝑝]𝑙ℎ ... 𝑢(𝑚)(𝑛)[𝑞]
[

𝑃 (𝑛)]

𝑙ℎ
⋮ ⋱ ⋮ ⋱ ⋮

𝑢(𝑚)(𝑛)
[

𝑃 (𝑚)][1]
𝑙ℎ ... 𝑢(𝑚)(𝑛)

[

𝑃 (𝑚)][𝑝]
𝑙ℎ ... 𝑢(𝑚)(𝑛)

[

𝑃 (𝑚)][𝑃 (𝑛)]

𝑙ℎ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(𝑛) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0
⋮ ⋮ ⋮
1 0 0
0 1 𝑎(𝑛)[1]
⋮ ⋮ ⋮
0 1 𝑎(𝑛)

[

𝑃 (𝑛)]

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑎(𝑛)[𝑝] = �̂�(𝑛)[𝑝]1 − 𝐶 (𝑛)
1 − 𝛾𝐶 (𝑛)

2 , (𝑛) =

⎡

⎢

⎢

⎢

⎣

𝑏(𝑛)[1]1 ... 𝑏(𝑛)
[

𝑃 (𝑛)]

1 0 ... 0

0 ... 0 𝑏(𝑛)[1]1 ... 𝑏(𝑛)
[

𝑃 (𝑛)]

1

0 ... 0 𝑏(𝑛)[1]2 ... 𝑏(𝑛)
[

𝑃 (𝑛)]

2

⎤

⎥

⎥

⎥

⎦

,

(A.8)
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where explicit expressions for the coefficients 𝑢(𝑚)(𝑛)[𝑞][𝑝]𝑙ℎ and 𝑏(𝑛)[𝑝]𝑙 (𝑙, ℎ = 1, 2) can be specified only once the collocation
node positions are defined, with the source node 𝑞 located along the 𝑚-th inclusion and the field node 𝑝 along the 𝑛-th
inclusion.

Having assumed the positioning of the collocation points as given by eqn (42), the number of nodes for each inclusion
becomes

𝑃 (𝑛) = 2𝐸(𝑛) + 1, (A.9)
and the position of, or the stress jump at, the 𝑗-th node (𝑗 = 1, 2, 3) of the 𝑒-th element (𝑒 = 1, ..., 𝐸(𝑛) − 1) can be related
to that at the 𝑝-th node (𝑝 = 1, ..., 𝑃 (𝑛)) as

�̂�(𝑛)[𝑝]1 = �̂�(𝑛)[2(𝑒−1)+𝑗]1 = �̂�(𝑛)(𝑒)(𝑗)1 ,

[[

𝑡2ℎ
]](𝑛)[2(𝑒−1)+𝑗] =

[[

𝑡2ℎ
]](𝑛)(𝑒)(𝑗) ,

𝑛 = 1, ..., 𝑁. (A.10)

Coefficients 𝑢(𝑚)(𝑛)[𝑞][𝑝]𝑙ℎ and 𝑏(𝑛)[𝑝]𝑙 follow for the first node (𝑝 = 1) as

𝑢(𝑚)(𝑛)[𝑞][1]𝑙ℎ = 𝑄𝑘ℎ𝑄𝑔𝑙Δ
(𝑛)
1 ∫

1

0
𝜑(𝑛)(1)
1 (𝜉) 𝑣𝑔𝑘

(

𝐐𝑇
(

�̂�(𝑛)(1)1 + 𝜉Δ(𝑛)
1 − �̂�(𝑚)[𝑞]1 , 𝐶 (𝑛)

2 − 𝐶 (𝑚)
2

))

d𝜉,

𝑏(𝑛)[1]1 = Δ(𝑛)
1 ∫

1

0
𝜑(𝑛)(1)
1 (𝜉)𝑑𝜉,

𝑏(𝑛)[1]2 = Δ(𝑛)
1 ∫

1

0

(

�̂�(𝑛)(1)1 + 𝜉Δ(𝑛)
1 − 𝐶 (𝑛)

1 − 𝛾𝐶 (𝑛)
2

)

𝜑(𝑛)(1)
1 (𝜉)𝑑𝜉,

(A.11)

for the last node (𝑝 = 𝑃 (𝑛)) as

𝑢(𝑚)(𝑛)[𝑞][𝑃
(𝑛)]

𝑙ℎ = 𝑄𝑘ℎ𝑄𝑔𝑙Δ
(𝑛)
𝐸(𝑛) ∫

1

0
𝜑(𝑛)(𝐸(𝑛))
3 (𝜉) 𝑣𝑔𝑘

(

𝐐𝑇
(

�̂�(𝑛)(𝐸
(𝑛))

1 + 𝜉Δ(𝑛)
𝐸(𝑛) − �̂�(𝑚)[𝑞]1 , 𝐶 (𝑛)

2 − 𝐶 (𝑚)
2

))

d𝜉,

𝑏(𝑛)[𝑃
(𝑛)]

1 = Δ(𝑛)
𝐸(𝑛) ∫

1

0
𝜑(𝑛)(𝐸(𝑛))
3 (𝜉)𝑑𝜉,

𝑏(𝑛)
[

𝑃 (𝑛)]

2 = Δ(𝑛)
𝐸(𝑛) ∫

1

0

(

�̂�(𝑛)(𝐸
(𝑛))

1 + 𝜉Δ(𝑛)
𝐸(𝑛) − 𝐶 (𝑛)

1 − 𝛾𝐶 (𝑛)
2

)

𝜑(𝑛)(𝐸(𝑛))
3 (𝜉)𝑑𝜉,

(A.12)

while for the inner non-shared nodes (𝑝 = 2, 4, 6, ..., 𝑃 (𝑛) − 3, 𝑃 (𝑛) − 1) as

𝑢(𝑚)(𝑛)[𝑞][𝑝]𝑙ℎ = 𝑄𝑘ℎ𝑄𝑔𝑙Δ
(𝑛)
𝑝
2 ∫

1

0
𝜑
(𝑛)

(

𝑝
2

)

2 (𝜉) 𝑣𝑔𝑘

(

𝐐𝑇

(

�̂�
(𝑛)

(

𝑝
2

)

1 + 𝜉Δ(𝑛)
𝑝
2

− �̂�(𝑚)[𝑞]1 , 𝐶 (𝑛)
2 − 𝐶 (𝑚)

2

))

d𝜉,

𝑏(𝑛)[𝑝]1 = Δ(𝑛)
𝑝
2 ∫

1

0
𝜑
(𝑛)

(

𝑝
2

)

2 (𝜉)𝑑𝜉,

𝑏(𝑛)[𝑝]2 = Δ(𝑛)
𝑝
2 ∫

1

0

(

�̂�
(𝑛)

(

𝑝
2

)

1 + 𝜉Δ(𝑛)
𝑝
2

− 𝐶 (𝑛)
1 − 𝛾𝐶 (𝑛)

2

)

𝜑
(𝑛)

(

𝑝
2

)

2 (𝜉)𝑑𝜉,

(A.13)
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and, finally, for the inner shared nodes (𝑝 = 3, 5, 7, ..., 𝑃 (𝑛) − 4, 𝑃 (𝑛) − 2) as

𝑢(𝑚)(𝑛)[𝑞][𝑝]𝑙ℎ = 𝑄𝑘ℎ𝑄𝑔𝑙

[

Δ(𝑛)
𝑝−1
2
∫

1

0
𝜑
(𝑛)

(

𝑝−1
2

)

3 (𝜉) 𝑣𝑔𝑘

(

𝐐𝑇

(

�̂�
(𝑛)

(

𝑝−1
2

)

1 + 𝜉Δ(𝑛)
𝑝−1
2

− �̂�(𝑚)[𝑞]1 , 𝐶 (𝑛)
2 − 𝐶 (𝑚)

2

))

d𝜉

+Δ(𝑛)
𝑝+1
2
∫

1

0
𝜑
(𝑛)

(

𝑝+1
2

)

1 (𝜉) 𝑣𝑔𝑘

(

𝐐𝑇

(

�̂�
(𝑛)

(

𝑝+1
2

)

1 + 𝜉Δ(𝑛)
𝑝+1
2

− �̂�(𝑚)[𝑞]1 , 𝐶 (𝑛)
2 − 𝐶 (𝑚)

2

))

d𝜉
]

,

𝑏(𝑛)[𝑝]1 = Δ(𝑛)
𝑝−1
2
∫

1

0
𝜑
(𝑛)

(

𝑝−1
2

)

3 (𝜉)𝑑𝜉 + Δ(𝑛)
𝑝+1
2
∫

1

0
𝜑
(𝑛)

(

𝑝+1
2

)

1 (𝜉)𝑑𝜉,

𝑏(𝑛)[𝑝]2 = Δ(𝑛)
𝑝−1
2
∫

1

0

(

�̂�
(𝑛)

(

𝑝−1
2

)

1 + 𝜉Δ(𝑛)
𝑝−1
2

− 𝐶 (𝑛)
1 − 𝛾𝐶 (𝑛)

2

)

𝜑
(𝑛)

(

𝑝−1
2

)

3 (𝜉)𝑑𝜉

+Δ(𝑛)
𝑝+1
2
∫

1

0

(

�̂�
(𝑛)

(

𝑝+1
2

)

1 + 𝜉Δ(𝑛)
𝑝+1
2

− 𝐶 (𝑛)
1 − 𝛾𝐶 (𝑛)

2

)

𝜑
(𝑛)

(

𝑝+1
2

)

1 (𝜉)𝑑𝜉.

(A.14)
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